Front acceleration by dynamic selection in Fisher population waves
نویسندگان
چکیده
منابع مشابه
electron acceleration by Gravitational Waves
We investigate the non-linear interaction of a strong Gravitational Wave with the plasma during the collapse of a massive magnetized star to form a black hole, or during the merging of neutron star binaries (central engine). We found that under certain conditions this coupling may result in an efficient energy space diffusion of particles. We suggest that the atmosphere created around the centr...
متن کاملParticle acceleration by electromagnetic waves.
We consider the symmetry in the interaction of photons and electrons, which has led to a common description of electron and photon accelerations; effects such as photon Landau damping arise naturally from such a treatment. Intense electromagnetic waves can act as a photon mirror to charged particles. The subsequent acceleration is equivalent to the photon pulse accelerating electrons. During th...
متن کاملFisher waves and front roughening in a two-species invasion model with preemptive competition.
We study front propagation when an invading species competes with a resident; we assume nearest-neighbor preemptive competition for resources in an individual-based, two-dimensional lattice model. The asymptotic front velocity exhibits an effective power-law dependence on the difference between the two species' clonal propagation rates (key ecological parameters). The mean-field approximation b...
متن کاملIon acceleration by beating electrostatic waves: domain of allowed acceleration.
The conditions under which a magnetized ion can be accelerated through a nonlinear interaction with a pair of beating electrostatic waves are explored. It has been shown [Benisti et al., Phys. Plasma 5, 3224 (1998)] that the electric field of the beating waves can, under some conditions, accelerate ions from arbitrarily low initial velocity in stark contrast with the well-known nonlinear thresh...
متن کاملCosmic ray acceleration by fast magnetosonic waves
Recently, Schlickeiser and Miller have calculated anew the acceleration rate of cosmic rays by fast magnetosonic plasma waves in a small-beta plasma, using a linear dispersion relation. They found that the transit-time damping of fast mode waves provides the dominant contribution to the stochastic acceleration rate of cosmic ray particles, both, in pure fast mode wave turbulence as well as in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.86.041908